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Idea

Let M be a spin manifold.

spin
structure

⇝ spinor
bundle

⇝ special
spinors

⇝ geometric
properties

Examples
l If M admits a spin structure carrying a nowhere-vanishing parallel spinor, then M is
Ricci-flat.

l Wang characterised Riemannian holonomies of spin manifolds in terms of the space of
parallel spinors1.

? Question: what if M is not spin?
? Idea: equip every orientable manifold with spin-like structures.

1M.Y. Wang. “Parallel spinors and parallel forms”. In: Ann. Global Anal. Geom. (1989).



Spin structures I

Let Mn be an oriented Riemannian manifold

with bundle of oriented orthonormal frames FM.

A spin structure is a lift of the structure group of FM to the group Spin(n) along the double
covering

λn : Spin(n) → SO(n).

In other words, it is a pair (P,Φ)where

l P is a principal Spin(n)-bundle over M, and
l Φ: P → FM is a Spin(n)-equivariant bundle map covering the identity, where Spin(n)
acts on FM via λn.



Spin structures II

In other words, it is a pair (P,Φ)where

l P is a principal Spin(n)-bundle over M, and

l Φ: P → FM is a Spin(n)-equivariant bundle map covering the identity, where Spin(n)
acts on FM via λn.

P× Spin(n) P

M.

FM× SO(n) FM

Φ×λn Φ



Spin structures III

Spin structures turn out not to depend on the orientation or the Riemannian metric:

Theorem
l M admits a spin structure if and only if the first two Stiefel-Whitney classes of M vanish:

w1(M) = w2(M) = 0.

l In this case, spin structures are classified by the first cohomology H1(M;Z2).



Spinr structures I

What can we do with non-spin manifolds?

Idea: enlarge the spin group:

Spin(n) SO(n).

L

λn

Example

SpinC(n) =
Spin(n)× U(1)

〈(−1,−1)〉
, SpinH(n) =

Spin(n)× Sp(1)
〈(−1,−1)〉

.



Spinr structures II

Note that U(1) ∼= Spin(2) and Sp(1) ∼= Spin(3).

Definition

Spinr(n) :=
Spin(n)× Spin(r)

〈(−1,−1)〉
.

Definition
A spinr structure on an oriented Riemannian n-manifold is a lift of the structure group of
the positively oriented orthonormal frame bundle FM to Spinr(n) along the composition

λrn : Spinr(n) −→ SO(n)× SO(r) −→ SO(n)
[a,b] 7→ (λn(a), λr(b)) 7→ λn(a).



Spinr structures III

In other words, a spinr structure on M consists of the following data:

l a principal Spinr(n)-bundle P over M, and
l a Spinr(n)-equivariant bundle mapΦ: P → FM, where Spinr(n) acts on FM through λrn.

Definition
The rank-r vector bundle associated to P along the composition

Spinr(n) → SO(n)× SO(r) → SO(r)

is called the auxiliary bundle of the spinr structure.
l For other twists, see Avis - Isham2, Friedrich - Trautman3, Lazaroiu - Shahbazi4.

2S. J. Avis and C. J. Isham. “Generalized Spin structures on four-dimensional space-times”. In: Comm. Math.
Phys. (1980).

3Th. Friedrich and A. Trautman. “Spin spaces, Lipschitz groups, and spinor bundles”. In: Ann. Global Anal.
Geom. (2000). Special issue in memory of Alfred Gray (1939–1998).

4C.I. Lazaroiu and C.S. Shahbazi. “Complex Lipschitz structures and bundles of complex Clifford modules”.
In: Differential Geom. Appl. (2018).



Characterisation

Theorem (Albanese - Milivojević, 20215)
The following are equivalent for an oriented Riemannian manifold M:
1. M is spinr;
2. there is an orientable rank-r real vector bundle π : E → M such that TM⊕ E is spin, i.e.,

w1(TM⊕ E) = w2(TM⊕ E) = 0;
3. M embeds in a spin manifold with codimension r.

5M. Albanese and A. Milivojević. “Spinh and further generalisations of spin”. In: J. Geom. Phys. (2021).



A few examples

Examples
1. Every oriented n-manifold M admits a spinn structure.

Take E = TM, and note that

w2(TM⊕ E) = w2(TM) +w1(TM)w1(E) +w2(E) = 2w2(TM) = 0.

2. Every almost-complex manifold admits a spin2 structure.
Take E to be the anticanonical bundle of an almost-complex structure, and compute

w2(TM⊕ E) = w2(TM) +w2(E) = 2(c1(TM) mod 2) = 0.



Proof of Albanese-Milivojević 1 ⇐⇒ 2

l M is spinr =⇒ ∃ E such that TM⊕ E is spin:
Take E to be the auxiliary bundle of a spinr structure. Then, the frame bundle of TM⊕ E
lifts to Spinr(n) along

Spinr(n) → Spin(n+ r) → SO(n+ r).

In particular, it lifts to Spin(n+ r).

l ∃ E such that TM⊕ E is spin =⇒ M is spinr:
This follows from the fact that the following is a pullback diagram in the categorical
sense:

Spinr(n) Spin(n+ r)

SO(n)× SO(r) SO(n+ r).



Proof of Albanese-Milivojević 2 ⇐⇒ 3

l ∃ E such that TM⊕ E is spin =⇒ M embeds into a spin manifold with codimension r:

M embeds with codimension r into the total space of E, which is spin because

w2(TE) = w2(π
∗(TM⊕ E)) = π∗(w2(TM⊕ E)) = 0.

l M embeds into a spin manifold with codimension r =⇒ ∃ E such that TM⊕ E is spin:

Let ι : M ↪→ X be such an embedding, and take E to be the normal bundle of ι. Then,

0 = ι∗(w2(TX)) = w2(ι
∗(TX)) = w2(TM⊕ E).



Invariance

Let G be a connected Lie group acting smoothly on M by isometries.

Then, G acts naturally on FM by bundle isomorphisms.

Definition
A G-invariant spinr structure on M is a spinr structure (P,Φ)where both P and Φ are
G-equivariant.

G× P× Spinr(n) P

M.

G× FM× SO(n) FM

IdG ×Φ×λr
n Φ



Homogeneous Spaces

l Let Mn be an oriented Riemannian homogeneous G-space, and fix o ∈ M.
l Then, M ∼= G/H, where H = StabG(o).
l G → G/H ∼= M is a principal H-bundle.
l For every h ∈ H,

(Lh)∗ : ToM → Th·oM = ToM.

Definition
The isotropy representation is defined as

σ : H → SO(ToM) ∼= SO(n)
h 7→ (Lh)∗.

FM is isomorphic to G×σ SO(n).



Invariant spinr Structures on Homogeneous Spaces

Suppose σ lifts to Spinr(n):

Spinr(n)

H SO(n).

λr
n

σ

σ̃

Then, the pair (P,Φ)where

l P = G×σ̃ Spinr(n), and

l Φ: P → FM, [g, µ] 7→ [g, λrn(µ)]

defines a G-invariant spinr structure on M.



Classification

Theorem (A. - Lawn6)
Let G/H be an n-dimensional oriented Riemannian homogeneous space with H connected
and isotropy representation σ : H → SO(n). Then, there is a bijective correspondence
between

l G-invariant spinr structures on G/Hmodulo G-equivariant equivalence, and
l Lie group homomorphisms ϕ : H → SO(r) such that σ × ϕ : H → SO(n)× SO(r) lifts to

Spinr(n) along λrn modulo conjugation by an element of SO(r).

6D. Artacho and M.-A. Lawn. Generalised Spinr Structures on Homogeneous Spaces. To appear in Diff.
Geom. Appl. 2025.



Special invariant spinr structures on spheres and holonomy lifts

Theorem (A.-Lawn7)
Let G be the holonomy group of a simply connected irreducible non-symmetric Riemannian
manifold of dimension n+ 1 ≥ 4. Let H ≤ G be a subgroup such that Sn ∼= G/H, which
exists, by Berger’s classification. Then, the following are equivalent:
1. There exists a homomorphic lift of the holonomy representation to Spinr(n+ 1).
2. Sn has a G-invariant spinr structure with strongly G-trivial auxiliary bundle.

7D. Artacho and M.-A. Lawn. Generalised Spinr Structures on Homogeneous Spaces. To appear in Diff.
Geom. Appl. 2025.



Invariant spinr structures on spheres

Sphere Acting group G Minimal r for G-invariant spinr structure

Sn SO(n+ 1)
r = n, if n 6= 4
r = 3, if n = 4

S2n+1 U(n+ 1) r = 2

S2n+1 SU(n+ 1) r = 1

S4n+3 Sp(n+ 1) r = 1

S4n+3 Sp(n+ 1) · U(1)
r = 1, if n odd
r = 2, if n even

S4n+3 Sp(n+ 1) · Sp(1) r = 1, if n odd
r = 3, if n even

S6 G2 r = 1

S7 Spin(7) r = 1

S15 Spin(9) r = 1



Spinors

The complex vector bundleΣM → M associated to a spin structure via

∆n : Spin(n) → EndC(Σn)

is called the spinor bundle: its sections are known as spinors.

Cliffordmultiplication: tangent vectors act fibrewise on spinors, satisfying

X · Y · ψ + Y · X · ψ = −2g(X,Y)ψ

for all vector fields X,Y ∈ Γ(TM) and spinors ψ ∈ Γ(ΣM).

The Levi-Civita connection of M induces the spin connection∇ on ΣM.



Generalised Killing spinors

A spinor ψ is generalised Killing if it satisfies

∇Xψ = A(X) · ψ,

for all vector fields X, where A is a symmetric endomorphism of TM.

l If A = 0, ψ is parallel – see Wang8;

l If A = λ Id for some constant λ ∈ C, ψ is Killing – see Bär9.

The existence of these spinors is often related to curvature properties and G-structures –
see Conti - Salamon10, Agricola - Friedrich11.

8M.Y. Wang. “Parallel spinors and parallel forms”. In: Ann. Global Anal. Geom. (1989).
9Christian Bär. “Real Killing spinors and holonomy”. In: Comm. Math. Phys. (1993).
10D. Conti and S. Salamon. “Generalized Killing spinors in dimension 5”. In: Trans. Amer. Math. Soc. (2007).
11I. Agricola et al. “Spinorial description of SU(3)- and G2-manifolds”. In: J. Geom. Phys. (2015).



Spinr spinors

Let (P,Φ) be a spinr structure.

For odd m, the m-twisted spinr spinor bundleΣm
n,rM is the one associated to P via the

representation

∆m
n,r := ∆n ⊗∆⊗m

r

of Spinr(n). Sections of Σm
n,rM are called spinr spinors.

The Levi-Civita connection on M and a connection on the auxiliary bundle determine a
connection on each Σm

n,rM.

There is a characterisation of special holonomy in terms of parallel twisted pure spinors
by Herrera - Santana, 201912.

12R. Herrera and N. Santana. “Spinorially twisted Spin structures. II: twisted pure spinors, special Riemannian
holonomy and Clifford monopoles”. In: SIGMA Symmetry Integrability Geom. Methods Appl. (2019).



Invariant spinr spinors on projective spaces

Jointly with Hofmann13, we obtained the following:

M G r m dim
(
Σm
∗,r
)

inv Special spinors Geometry
CPn SU(n+ 1) 2 1 2 pure, parallel Kähler-Einstein

CP2n+1 Sp(n+ 1)
2, if n even 1 2 pure, parallel Kähler-Einstein
1, if n odd 1 2 generalised Killing Einstein, nearly Kähler (n = 1)

HPn Sp(n+ 1) 3 n 1 pure, parallel quaternionic Kähler

Table: For each compact, simple, and simply connected Lie group G acting transitively on M: the
minimum values of r,m such that M admits a G-invariant spinr structure that carries a non-zero
invariant m-twisted spinr spinor, the dimension of the space of such invariant spinors, and the
geometric significance of these.

13D. Artacho and J. Hofmann. “The geometry of generalised spinr spinors on projective spaces”. In: SIGMA
Symmetry Integrability Geom. Methods Appl. (2025).
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